Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes.

نویسندگان

  • Marie Stiborová
  • Václav Martínek
  • Helena Rýdlová
  • Petr Hodek
  • Eva Frei
چکیده

1-Phenylazo-2-hydroxynaphthol (Sudan I, C.I. Solvent Yellow 14) is a liver and urinary bladder carcinogen in mammals. We compared the ability of hepatic microsomal samples from different species including human to metabolize Sudan I. Comparison between experimental animals and human cytochromes P450 (CYP) is essential for the extrapolation of animal carcinogenicity data to assess human health risk. Human microsomes generated the pattern of Sudan I metabolites reproducing that formed by hepatic microsomes of rats. Using hepatic microsomes of rats pretreated with specific CYP inducers, microsomes from Baculovirus-transfected insect cells expressing recombinant human CYP enzymes, purified CYP enzymes, and selective CYP inhibitors, we found that rat CYP1A1 and recombinant human CYP1A1 are the most efficient enzymes metabolizing Sudan I. Microsomes from livers (the target of Sudan I carcinogenicity) of different human donors were used to estimate whether authentic human CYPs oxidize Sudan I. Using Western blot analysis and NH(2)-terminal sequencing, we were able to detect and quantify CYP1A1 in human hepatic microsomes. The sequence of nine amino acids of the protein band cross-reacting with antirat CYP1A1 in human microsomes, LFPISMSAT, matched the sequence of human CYP1A1 perfectly (residues 2-10). CYP1A1 expression levels varied significantly among the different human microsomes (0.04-2.4 pmol/mg protein), and constituted <0.6% of the total hepatic CYP complement. All of the human hepatic microsomal samples oxidized Sudan I to C-hydroxymetabolites. Moreover, using the nuclease P1-enhanced version of the (32)P-postlabeling assay, we found that human microsomes were competent in activating Sudan I to form adducts with DNA. The role of specific CYP enzymes in the human hepatic microsomal metabolism was investigated by correlating the CYP-catalytic activities (or CYP contents) in each microsomal sample with the levels of individual metabolites and/or Sudan I-DNA adducts formed by the same microsomes, and by examining the effects of agents that can inhibit specific CYP in Sudan I metabolism. On the basis of these studies, we attribute most of Sudan I metabolism in human microsomes to CYP1A1, but participation of CYP3A4 cannot be ruled out. These results, the first report on the metabolism of Sudan I by human CYP enzymes, strongly suggest a carcinogenic potency of this rodent carcinogen for humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome p450 reductase.

Determining the capability of humans to metabolize the suspected carcinogen 3-nitrobenzanthrone (3-NBA) and understanding which human enzymes are involved in its activation are important in the assessment of individual susceptibility to this environmental contaminant found in diesel exhaust and ambient air pollution. We compared the ability of eight human hepatic microsomal samples to catalyze ...

متن کامل

Oxidation of carcinogenic 2-nitroanisole by rat cytochromes P450 – similarity between human and rat enzymes

2-Nitroanisole (2-NA) is an important industrial pollutant and a potent carcinogen for rodents. Understanding which cytochrome P450 (CYP) enzymes are involved in its metabolism are important to assess an individual's susceptibility to this environmental carcinogen. The aim of this study was to evaluate the efficiency of rat hepatic CYPs to oxidize 2-NA, to examine the metabolites formed during ...

متن کامل

Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2.

Exposure to aristolochic acid (AA) is associated with human nephropathy and urothelial cancer. Individual susceptibility to AA-induced disease likely reflects individual differences in enzymes that metabolize AA. Herein, we evaluated AAI metabolism by human cytochrome P450 (CYP) 1A1 and 1A2 in two CYP1A-humanized mouse lines that carry functional human CYP1A1 and CYP1A2 genes in the absence of ...

متن کامل

Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant human cytochrome P450 enzymes.

The N-hydroxylation of carcinogenic arylamines represents an initial step in their metabolic activation. Animal studies have shown that this reaction is catalyzed by the cytochrome P450 (P450) enzymes P450 1A1 and P450 1A2. In this study, utilizing enzymes expressed in Escherichia coli (and purified) or in human B-lymphoblastoid cells, the catalytic activities of recombinant human P450 1A1, P45...

متن کامل

Mechanism-based inhibition of human cytochrome P450 1A1 by rhapontigenin.

Recently we reported that resveratrol (trans-3,4',5-trihydroxystilbene) showed selective inhibition of recombinant human cytochrome P450 (P450) 1A1 in a concentration-dependent manner. The inhibition of recombinant human P450 1A1, 1A2, or 1B1 by various hydroxystilbene compounds having a similar structure to resveratrol was investigated using bacterial membranes from a human P450/NADPH-P450 red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 20  شماره 

صفحات  -

تاریخ انتشار 2002